

Status of Critical Raw Materials reserves and production in Poland

Marcin Lutyński

Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland

Workshop introducing the knowledge of critical raw materials in V4 7.12.2020

INTRODUCTION

Large scale energy storage

Increasing share of renewables such as wind turbines and photovoltaics in the energy mix of European Union creates challenges for the electricity grid. Compressed Air Energy Storage (CAES) could be one of the solutions to this problem.

Up till now as the Compressed Air Storage (CAS) salt caverns have been the preferred locations.

Critical raw materials as of 2020 EU report

2020 critical raw materials				
Antimony	Hafnium Phosphorus			
Baryte	Heavy Rare Earth Elements	Scandium		
Beryllium	Light Rare Earth Elements Silicon metal			
Bismuth	Indium Tantalum			
Borate	Magnesium	Tungsten		
Cobalt	Natural graphite Vanadium			
Coking coal	Natural rubber	Bauxite		
Fluorspar	Niobium	Lithium		
Gallium	Platinum Group Metals	Titanium		
Germanium	Phosphate rock	Strontium		

Raw materials critical for the economy of Poland Experts list

Antimony	Hafnium Phosphorus		
Baryte	Heavy Rare Earth Elements Scandium		
Beryllium	Light Rare Earth Elements Silicon metal		
Bismuth	Indium Tantalum		
Borate	Magnesium	Tungsten	
Cobalt	Natural graphite Vanadium		
Coking coal	Natural rubber	Bauxite	
Fluorspar	Niobium Lithium		
Gallium	Platinum Group Metals	Titanium	
Germanium	Phosphate rock	Strontium	

(Radwańska-Bąk et al. 2018)

Raw materials critical for the economy of Poland Experts list

Antimony	Hafnium	Phosphorus
Baryte	Heavy Rare Earth Elements	Scandium
Beryllium	Light Rare Earth Elements	Silicon metal
Bismuth	Indium	Tantalum
Borate	Magnesium	Tungsten
Cobalt	Natural Graphite	Vanadium
Coking Coal	Natural Rubber	Bauxite
Fluorspar	Niobium	Lithium
Gallium	Platinum Group Metals	Titanium
Germanium	Phosphate rock	Strontium

(Radwańska-Bąk et al. 2018)

Raw material	Share of import in domestic demand, %	Domestic resources
Antimony	100	None
Baryte	100	Some reserves in Lower Silesia
Beryllium	100	None. Could be extracted from coal fly ash.
Cobalt	100	Possible recovery from Cu metallurgical waste or ore
Germanium	100	None
Gallium	100	Possible recovery from copper metallurgical waste
Indium	100	None
REE	100	Some waste contain REE
Platinum Group Metals	>80	Possible production from scrap metals containig platinum
Magnesium	100	Potential of prodution from dolomites
Natural graphite	100	Possible substitution by synthethic graphite
Niobium	100	None
Phosphate rock	100	Possible extraction, produced until 1971 in Poland.
Vanadium	100	0.26-0.76% V2O5 in some deposits. Some reserves in Cu ore deposits. Uneconomical extraction.

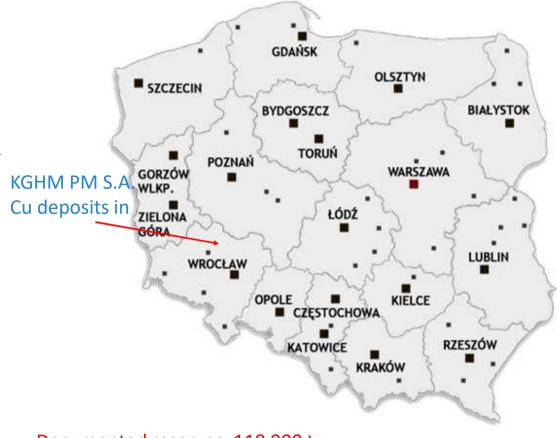
Baryte and fluorite

In Lower Silesia Baryte is found in vains where the content reaches up to 80%.

Last baryte and fluorite mine "Stanisławów" was closed in 2008.

Documented reserves: 5.67 mln t of Baryte and 0.54 mln t of Fluorite

7

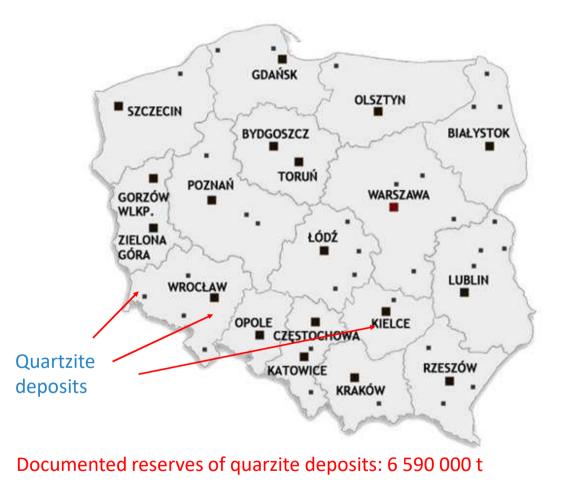

Cobalt

Fore-Sudetic Monocline and North Sudetic Troug.

Although KGHM Polska Miedz S.A. recovers many precious metals from Kupferschiefer ore, cobalt is not recovered yet. This metal occurs as an accompanying element, mostly in the form of cobaltite (CaAsS), with the average content of 50-80 g/Mg.

There is a possibility to recover cobalt from the

8 Kupferschiefer ore mined by KGHM Polska Miedz S.A. Due to unique mineralogy of this ore, it is difficult to find an efficient technology for the recovery. The previous studies showed that it is possible to recover cobalt with the use of leaching technology, both for flotation concentrates as well as converter slag, where currently cobalt is cumulating in metallurgical processes.


Documented reserves: 118 000 t

Silicone metal

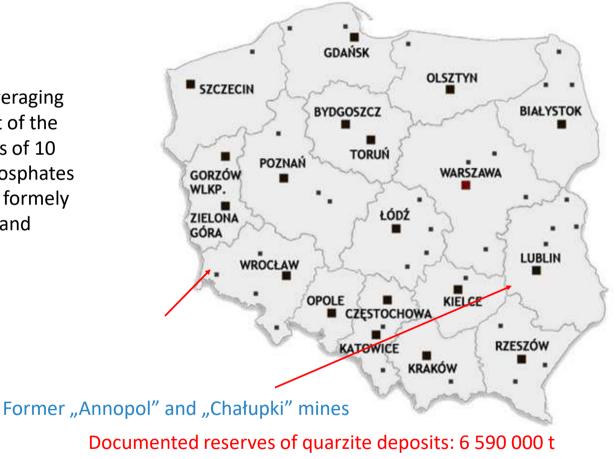
Silicon metal is produced in the submerged arc electric furnace by the reduction of quartzite rock with suitable carbonaceous reducing agents. Raw materials are selected for chemical purity, size consist, electrical resistance, and smelting characteristics.

Quartzite rock deposits are located in Upper 9 Silesia and in Świetokrzyskie

Silicone metal

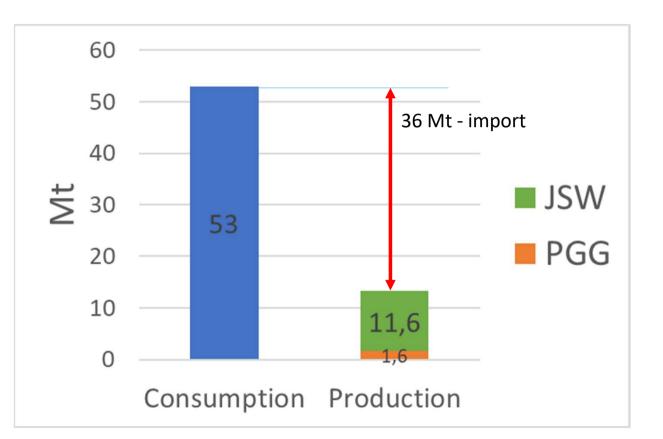
Silicon metal is produced in the submerged arc electric furnace by the reduction of quartzite rock with suitable carbonaceous reducing agents. Raw materials are selected for chemical purity, size consist, electrical resistance, and smelting characteristics.

Quartzite rock deposits are located in Upper ¹⁰ Silesia and in Świetokrzyskie


Documented reserves of quarzite deposits: 6 590 000 t

Phosphate rock

11


Deposits of phosphate concentration, averaging $14\% P_2O_5$ were recognized in the NE part of the Świętokrzyskie Mountains. The reosurces of 10 deposits are amounted to 42.4 Mt of phosphates (7.35 Mt P_2O_5) including 10.77 Mt in the formely mined deposits at Annapol (1924-1970) and Chałupki (1936-1956).

Coking coal

Coking coal is mined mostly by JSW SA Company but also by the PGG company. Share of import in domestic demand is approximately 75%.

Conclusions 01 ^v 02 ^s 03 ^s

Silesian University of Technology

THANK YOU!

marcin.lutynski@polsl.pl